Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
PLoS One ; 18(1): e0279643, 2023.
Article in English | MEDLINE | ID: covidwho-2197115

ABSTRACT

The COVID-19 pandemic has caused tremendous disruptions to non-COVID-19 clinical research. However, there has been little investigation on how patients themselves have responded to clinical trial recruitment during the COVID-19 pandemic. To investigate the effect of the COVID-19 pandemic on rates of patient consent to enrollment into non-COVID-19 clinical trials, we carried out a cross-sectional study using data from the Nitric Oxide/Acute Kidney Injury (NO/AKI) and Minimizing ICU Neurological Dysfunction with Dexmedetomidine-Induced Sleep (MINDDS) trials. All patients eligible for the NO/AKI or MINDDS trials who came to the hospital for cardiac surgery and were approached to gain consent to enrollment were included in the current study. We defined "Before COVID-19" as the time between the start of the relevant clinical trial and the date when efforts toward that clinical trial were deescalated by the hospital due to COVID-19. We defined "During COVID-19" as the time between trial de-escalation and trial completion. 5,015 patients were screened for eligibility. 3,851 were excluded, and 1,434 were approached to gain consent to enrollment. The rate of consent to enrollment was 64% in the "Before COVID-19" group and 45% in the "During COVID-19" group (n = 1,334, P<0.001) (RR = 0.70, 95% CI 0.62 to 0.80, P<0.001). Thus, we found that rates of consent to enrollment into the NO/AKI and MINDDS trials dropped significantly with the onset of the COVID-19 pandemic. Patient demographic and socioeconomic status data collected from electronic medical records and patient survey data did not shed light on possible explanations for this observed drop, indicating that there were likely other factors at play that were not directly measured in the current study. Increased patient hesitancy to enroll in clinical trials can have detrimental effects on clinical science, patient health, and patient healthcare experience, so understanding and addressing this issue during the COVID-19 pandemic is crucial.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pandemics , Cross-Sectional Studies , Patients , Time Factors
3.
Nitric Oxide ; 116: 7-13, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1356375

ABSTRACT

BACKGROUND: Inhaled nitric oxide (NO) is a selective pulmonary vasodilator. In-vitro studies report that NO donors can inhibit replication of SARS-CoV-2. This multicenter study evaluated the feasibility and effects of high-dose inhaled NO in non-intubated spontaneously breathing patients with Coronavirus disease-2019 (COVID-19). METHODS: This is an interventional study to determine whether NO at 160 parts-per-million (ppm) inhaled for 30 min twice daily might be beneficial and safe in non-intubated COVID-19 patients. RESULTS: Twenty-nine COVID-19 patients received a total of 217 intermittent inhaled NO treatments for 30 min at 160 ppm between March and June 2020. Breathing NO acutely decreased the respiratory rate of tachypneic patients and improved oxygenation in hypoxemic patients. The maximum level of nitrogen dioxide delivered was 1.5 ppm. The maximum level of methemoglobin (MetHb) during the treatments was 4.7%. MetHb decreased in all patients 5 min after discontinuing NO administration. No adverse events during treatment, such as hypoxemia, hypotension, or acute kidney injury during hospitalization occurred. In our NO treated patients, one patient of 29 underwent intubation and mechanical ventilation, and none died. The median hospital length of stay was 6 days [interquartile range 4-8]. No discharged patients required hospital readmission nor developed COVID-19 related long-term sequelae within 28 days of follow-up. CONCLUSIONS: In spontaneous breathing patients with COVID-19, the administration of inhaled NO at 160 ppm for 30 min twice daily promptly improved the respiratory rate of tachypneic patients and systemic oxygenation of hypoxemic patients. No adverse events were observed. None of the subjects was readmitted or had long-term COVID-19 sequelae.


Subject(s)
COVID-19 Drug Treatment , Hospitalization , Nitric Oxide/administration & dosage , Pneumonia, Viral/drug therapy , Respiration/drug effects , Administration, Inhalation , COVID-19/complications , COVID-19/virology , Dose-Response Relationship, Drug , Humans , Nitric Oxide/pharmacology , Nitric Oxide/therapeutic use , Pneumonia, Viral/complications
4.
J Vis Exp ; (171)2021 05 04.
Article in English | MEDLINE | ID: covidwho-1241300

ABSTRACT

Nitric Oxide (NO) is administered as gas for inhalation to induce selective pulmonary vasodilation. It is a safe therapy, with few potential risks even if administered at high concentration. Inhaled NO gas is routinely used to increase systemic oxygenation in different disease conditions. The administration of high concentrations of NO also exerts a virucidal effect in vitro. Owing to its favorable pharmacodynamic and safety profiles, the familiarity in its use by critical care providers, and the potential for a direct virucidal effect, NO is clinically used in patients with coronavirus disease-2019 (COVID-19). Nevertheless, no device is currently available to easily administer inhaled NO at concentrations higher than 80 parts per million (ppm) at various inspired oxygen fractions, without the need for dedicated, heavy, and costly equipment. The development of a reliable, safe, inexpensive, lightweight, and ventilator-free solution is crucial, particularly for the early treatment of non-intubated patients outside of the intensive care unit (ICU) and in a limited-resource scenario. To overcome such a barrier, a simple system for the non-invasive NO gas administration up to 250 ppm was developed using standard consumables and a scavenging chamber. The method has been proven safe and reliable in delivering a specified NO concentration while limiting nitrogen dioxide levels. This paper aims to provide clinicians and researchers with the necessary information on how to assemble or adapt such a system for research purposes or clinical use in COVID-19 or other diseases in which NO administration might be beneficial.


Subject(s)
COVID-19 Drug Treatment , Nitric Oxide/therapeutic use , Ventilators, Mechanical , Administration, Inhalation , Critical Care , Humans , Intensive Care Units , Nitric Oxide/administration & dosage , Respiratory Protective Devices , SARS-CoV-2
7.
Obstet Gynecol ; 136(6): 1109-1113, 2020 12.
Article in English | MEDLINE | ID: covidwho-733344

ABSTRACT

BACKGROUND: Rescue therapies to treat or prevent progression of coronavirus disease 2019 (COVID-19) hypoxic respiratory failure in pregnant patients are lacking. METHOD: To treat pregnant patients meeting criteria for severe or critical COVID-19 with high-dose (160-200 ppm) nitric oxide by mask twice daily and report on their clinical response. EXPERIENCE: Six pregnant patients were admitted with severe or critical COVID-19 at Massachusetts General Hospital from April to June 2020 and received inhalational nitric oxide therapy. All patients tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. A total of 39 treatments was administered. An improvement in cardiopulmonary function was observed after commencing nitric oxide gas, as evidenced by an increase in systemic oxygenation in each administration session among those with evidence of baseline hypoxemia and reduction of tachypnea in all patients in each session. Three patients delivered a total of four neonates during hospitalization. At 28-day follow-up, all three patients were home and their newborns were in good condition. Three of the six patients remain pregnant after hospital discharge. Five patients had two negative test results on nasopharyngeal swab for SARS-CoV-2 within 28 days from admission. CONCLUSION: Nitric oxide at 160-200 ppm is easy to use, appears to be well tolerated, and might be of benefit in pregnant patients with COVID-19 with hypoxic respiratory failure.


Subject(s)
Coronavirus Infections/drug therapy , Nitric Oxide/administration & dosage , Pneumonia, Viral/drug therapy , Pregnancy Complications, Infectious/drug therapy , Administration, Inhalation , Betacoronavirus , COVID-19 , Female , Humans , Massachusetts , Pandemics , Pregnancy , Pregnancy Complications, Infectious/virology , SARS-CoV-2 , Treatment Outcome
8.
Crit Care Explor ; 2(8): e0179, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-729203

ABSTRACT

OBJECTIVES: Patients with acute respiratory distress syndrome are at risk for developing cardiac dysfunction which is independently associated with worse outcomes. Transthoracic echocardiography is an ideal imaging modality for goal-directed assessment and optimization of cardiac function and volume status. Prone positioning, while demonstrated to improve oxygenation, offload the right ventricle, and reduce short-term mortality in acute respiratory distress syndrome, has previously precluded transthoracic echocardiography on these patients. The purpose of this study was to assess the ability to perform focused transthoracic echocardiography examinations on acute respiratory distress syndrome patients in the prone position. DESIGN: We performed a cross-sectional study of critically ill patients hospitalized for acute respiratory distress syndrome due to coronavirus disease 2019. SETTING: This study was conducted in medical and surgical intensive units in a tertiary hospital. PATIENTS: We examined 27 mechanically ventilated and prone patients with acute respiratory distress syndrome due to coronavirus disease 2019. Participants were examined at the time of enrollment in an ongoing clinical trial (NCT04306393), and no patients were excluded from echocardiographic analysis. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We were able to perform transthoracic echocardiography and obtain satisfactory images for quantitative assessment of right ventricular function in 24 out of 27 (88.9%) and left ventricular function in 26 out of 27 (96.3%) of patients in the prone position, including many who were obese and on high levels of positive end-expiratory pressure (≥ 15 cm H2O). CONCLUSIONS: Transthoracic echocardiography can be performed at the prone patient's bedside by critical care intensivists. These findings encourage the use of focused transthoracic echocardiography for goal-directed cardiac assessment in acute respiratory distress syndrome patients undergoing prone positioning.

SELECTION OF CITATIONS
SEARCH DETAIL